New Einstein Metrics in Dimension Five

نویسندگان

  • Charles P. Boyer
  • Krzysztof Galicki
چکیده

The purpose of this note is to introduce a new method for proving the existence of Sasakian-Einstein metrics on certain simply connected odd dimensional manifolds. We then apply this method to prove the existence of new Sasakian-Einstein metrics on S×S and on (S×S)#(S×S). These give the first known examples of non-regular Sasakian-Einstein 5manifolds. Our method involves describing the Sasakian-Einstein structures as links of certain isolated hypersurface singularities, and makes use of the recent work of Demailly and Kollár who obtained new examples of Kähler-Einstein del Pezzo surfaces with quotient singularities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Warped product and quasi-Einstein metrics

Warped products provide a rich class of physically significant geometric objects. Warped product construction is an important method to produce a new metric with a base manifold and a fibre. We construct compact base manifolds with a positive scalar curvature which do not admit any non-trivial quasi-Einstein warped product, and non compact complete base manifolds which do not admit any non-triv...

متن کامل

Cern-ph-th/2005-081 Hutp-05/a0025

We show that by taking a certain scaling limit of a Euclideanised form of the Plebanski–Demianski metrics one obtains a family of local toric Kähler–Einstein metrics. These can be used to construct local Sasaki–Einstein metrics in five dimensions which are generalisations of the Y p,q manifolds. In fact, we find that these metrics are diffeomorphic to those recently found by Cvetic, Lu, Page an...

متن کامل

ar X iv : h ep - t h / 05 05 02 7 v 1 3 M ay 2 00 5 Toric Sasaki – Einstein metrics on S 2 × S 3

We show that by taking a certain scaling limit of a Euclideanised form of the Plebanski–Demianski metrics one obtains a family of local toric Kähler–Einstein metrics. These can be used to construct local Sasaki–Einstein metrics in five dimensions, which are generalisations of the Y p,q metrics. In fact, we find that the local metrics are diffeomorphic to those recently found by Cvetic, Lu, Page...

متن کامل

Dehn Filling and Einstein Metrics in Higher Dimensions

We prove that many features of Thurston’s Dehn surgery theory for hyperbolic 3manifolds generalize to Einstein metrics in any dimension. In particular, this gives large, infinite families of new Einstein metrics on compact manifolds.

متن کامل

On quasi-Einstein Finsler spaces‎

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007